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PREFACE

This Technical Report is based on the master's thesis of Torn R. Houston.
Members of the thesis committee were Julian C. Stanley, Chairman; Frank
B. Baker; Henry B. Mann; and J. Marshall Osborn.

Extending knowledge about, and improving educational practices related to,
cognitive learning in children and youth is the primary goal of the Wisconsin
R & D Center for Cognitive Learning. The Laboratory of Experimental Design,
part of the technical section of theR & D Center, provides valuable assistance
to project directors in the design of experiments and also in the analysis of
data. Further, the staff of the LED are charged with extending knowledge about
experimental designs, scaling procedures, data analysis and the like.

This Technical Report is the fifth in a series describing new developments
in the methodological area. It deals with Latin squares as a control for pro-
gressive and adjancy effects in experimental designs. The history of Latin
squares is reviewed, and several algorithms for the construction of Latin and
Greco-Latin squares are proposed. Results are or particular application to
rating studies, and to designs requiring the "rotation" of teachers in class-
room research.

Herbert J. Klausmeier
Co-Director for Research
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INTRODUCTION

Latin squares, variously called "magic squares" and "Eulerian squares, "are of considerable
antiquity. The epigraph of this paper gives an example from astrology that may go back to Hellen-
istic times, and the extension of this use into ritual magic is well knovt n; e.g., in Marlowe's (10)
play The Tragedy of Doctor Faustus (1604), reference is made to

...Jehovah's name
Forward and backward anagrammatized (3. 9, 10)

probably alluding to a Latin square, k = 4, constructed by (19. 2) below, whose types were the
Tetragrammaton. It is reported (10) that this square summons the Devil, for which reason it will
not be exhibited here.

In recent times Latin squares have been found to have further practical application in experi-
mental design. Fisher 6) places the use of the Knut Vik square (a permutation by rows of the
square described in (6. 2) below) in agricultural experimentation as early as 1872. It is con-
venient to categorize applications of Latin squares in experimental design under three headings:

I. To increase the number of experimental units. A field subjected to k treatments can be
divided by restricted randLI-lization into k2 plots by a Latin square design, giving a k-fold increase
in experimental units (and distributes soil variability) for the same acreage.

II. For fractional factorial designs. Latin and hyper-Latin squares are sometimes used to
sample nossible treatment combinations within k -n fractional designs. Since such designs involve
kn aliases for every effect by the confounding of interactions, their use is questionable unless
there is assurance, rarely available in the behavioral sciences, that the interactions are close to
zero.

III. For counterbalancing repeated measures designs. When each experimental subject re-
ceives k successive treatments, it is often feasible and desirable to equalize progressive effects
(warm-up, fatigue, practice, etc.) by Latin squares. These insure that every treatment occurs,

1
on the average, in the 2 (k+l)th ordinal position, and in every position with equal frequency.

Note that the last application is a case of the second, where ordinal position is considered as
a non-interactive factor with k levels. A difficulty can arise in such cases, as the following
hypothetical example illustrates:

ix



Suppose that a study of diabolism were to be conducted, to determine the relative effective-
ness of four methods of exorcism: Bell (T1), Book (T2), Candle (T3), and Team Exorcism (T4).
The dependent variable could be the response to the question "Do you renounce the Devil?", di-
chotomously scored (affirmative = 1, no response or negative = 0). Suppose further that the in-
vestigator wished to apply all treatments to each S (Ss being 4N demoniacs), employing a Latin

square design of the form of (9. 1) below, so that non-ultimate T1 was always followed by T2, T2

by T3, T3 by T4, and T4 by T1. Then if T2 elicited a significantly higher mean response than
T1, there would still remain several plausible alternative hypotheses to the interpretation that
T2 was more potent than T1. Perhaps T4, which preceded T1 in 3N cases, left Ss unable to re-
spond until after T2; or perhaps T2 is comparatively ineffective unless an immediately prior T1
has rendered Ss susceptible to its effects.

Such "residual effects" are a general problem in repeated measures designs which an injudi-
cious choice of Latin squares can aggravate, as in the above example. Randomization(i. e. , ran-
dom linear permutations by row and column of a randomly selected square) is often suggested as
a remedy, but in dealing with small numbers there is considerable riskto the investigator of sub-
stituting bad luck for bad judgment and obtaining a design with unfortunately biased residuals con-
taminating main effects. Complete sets of permutations avoid this, but there may not be enough

Ss for this to be possible.

As Grant (8) and others have observed, such effect cannot be entirely controlled by Latin
squares. It is often worthwhile, however, to control for the most potent of these, the immedi-
ate sequential effects, by constructing Latta squares in such amanner that every treatment is im-
mediately followed by every other an equal number of times. Existing procedures for accom-
plishing this will be reviewed in this paper, and a general solution offe,.ed for the previously un-

solved case of k odd, where k is the order of the Latin square. This solution also provides for
the counterbalancing within (but not across) alphabets of Greco-Latin squares for k odd. It
should be noted that the given procedure (23.1) counterbalances only within rows; the extension to
within-column counterbalancing is trivial, but seems to be without application in the behavioral
sciences. In the diabolism exaraple given above, incidentally, Faustus' square (19. 1) will coun-
terbalance immediate sequential effects.



PART I

ORTHOGONAL SQUARES

1. Throughout discussion, k will be the symbol for the order of a Latin square (defined
below). For some natural number c, = 2c + 1, and k" = 2c. The notation eij (sometimes
with a comma in the subscript) will represent a cell in rectangular array E, at the intersec-
tion of the ith row and the VI column, i and j ranging from 0 to (k-1). Eij represents the
type occupying cell eij, and En the type in en, 0. Thus e2,5 = E7 signifies that the same type

is in cell e2,5 as e7, 0.

Definition 1: Rectangular array E is a Latin square if:

(1. 1) Eig Eii # Epi for all i p, j q.

(1. 2) There are k = i(max)+1 = j(max)+1
(1. 3) Exactly one type occupies each cell.

The number k is called the order of square E. An example of a Latin square of order k =
5 is:

(1. 4) 1 3 4 0 2
4 2 0 3 1

2 1 3 4 0 = (1.4)E.
0 4 2 1 3
3 0 1 2 4

2. A Latin square will be called a standard form (SFL) if the types in its first row and col-
umn are in natural order. Any Latin square can be put into the form of a SFL by pre- and
post-multiplication with appropriate permutation matrices. For example, the square given
above may be standardized by the operation:

(2.1) 0 0 0 1 0 1 0 0 0 0 0 1 2 3 4
1 0 0 0 0 0 0 0 0 1 1 0 4 2 3

0 1 0 0 (1.4)E 0 0 1 0 0 = 2 4 3 0 1

0 0 0 0 1 0 1 0 0 0 3 2 1 4 0
0 1 0 0 0 0 0 0 1 0 4 3 0 1 2.

Transformations such as the above, changing the order of the rows and/or columns of a
Latin square, will be called linear permutations. Call all the SFLs obtainable from a given
Latin square a linear set (a term not in general use). A number of higher-order groupings
are available for the classification of Latin squares [see Norton (11), Fisher and Yates (7D,

including transformation sets, species, families, domains, only the first of which will be
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discussed here. An interesting feature of all classificatory systems, however, is that as of
the present, the cardinality of the set of all SFLs, linear sets, species, etc. is unknown for

any k > 7.

3. Two Latin squares of the same order, R and G, are said to be orthogonal to each other if,
when juxtaposed by corresponding elements to form a k order array of double-entry cells
(R,G), every paired combination of types Rm,Gn occurs exactly once. (Latin squares are
so named, incidentally, because Roman letters are often used to represent the several types

of such squares. Similarly, squares of the form of (R,G) are called "Greco-Latin squares"
because Greek letters are often used to represent the types of one of the orthogonal squares. )

An example of a Greco-Latin square for k = 3 is:

(3.1) 00
11
22

12
20
01

21

02
10.

Orthogonal squares cannot be constructed for k = 2 or 6. Gunther (14) cites an early proof

of the latter (1842) by Clausen by exhaustive examination of 6x6 squares. Akar (12), also
cited in Norton's extensive review of the literature before 1939, gave aproof in 1895 thator-

thogonal squares existed for any k' cdd, doubtless along lines similar to those followed in
Algorithms I or II below. The even numbers proved more refractor rose (3) and Stevens

(17) independently and concurrently proved the existence of orthogonal squares for k=2n and

k = pin in general, for p' a prime and n a natural number greater than one. Mann (9) pro-

vided for the construction of non-cyclic (see section 6) orthogonal squares for a large class

of values of k; but not until 1959 did Bose and Shrikhande (4) disprove IL'uler's (13) conjecture

that no orthogonal squares exist for k = 4t+2, for t an integer.

4. For k = 5 there exist 56 SFLs. These fall into sixteen linear sets, ten of five SFLs and

six of one. Appendix A lists these SFLs in lexicographic order, indicating the transforma-

tion set to which they belong. To illustrate the concept of a transformation set, define Q(E),

called a recoding of a Latin square E, as the square constructed by substituting throughout
E Q0 for Eo, Q1 for E1, os1 C2k.1 for Ek_1, where Q01Q11es IQk.1 is any permutation of

the first k non-negative integers. Call Cw) any linear permutation of a SFL (for k = 5) des-

ignated in Appendix A as a member of linear set (w). Then the notation

(4.1) SFL(1) 02413 = $(6)

indicates that any SFL from set (1), when recoded by the permutation 02413, gives a square

whose SFLs are in set (6).

(4.2) SFL(1) 13024 =
SFL(1) 24130 =
SFL(1) 30:141 =
SFL(1) 4144)2, =

The reader can easily verify that:

$(7) SFL(1) 01234
$(8) SFL(1) 12340
$(9) SFL(1) 23401
$(10) SFL(i) 34012

SFL(1) 40123

=
=
=

=

=

$(1)
$(2)
$(3)
$(4)
$(5).
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For any integer m # 0, if x = am + r, for integer a and 0 r < m, x is said to be congru-
ent to r modulo m, written x = r(mod. m), and x = r (reduced modulo m). Define V as the
union of linear sets (1) through (5), and V' as the union of linear sets (6) through (10), v and
v' being members of these sets. The reader can verify that

(4. 3) SFL(v) (0+y, 1+y, 2+y, 3+y, 4+y) (mod. 5) = $(v)
SFL(v') (0+y, 1+y, 2+y, 3+y, 4+y) (mod. 5) = $(v')

SFL(v) (0+y, 2+y, 4-17,1+y, 3+y) (mod. 5) = $(v')
SFL(v') (0+y, 2+y, 4+y, 1+y, 3+y) (mod. 5) = $(v),

and analogous statements regarding V and V' can be made for similar sets of permutations,
within each of which relationships such as occur in (4.1,2) exist. Since by definition, Latin
squares within the same linear set may be permuted into each other, by appropriate recod-
ings any square in the union of V and V' can be transformed into any other. A transforma-
tion set is defined as a set of all Latin squares that by recodings andlinear permutations can
be changed into each other.

5. It is not difficult to show that the six 5x5 SFLs in Appendix A not designated as members
of linear sets (1)-(10) are in fact not members of the transformation set V union V'. Con-_
sider the squares

(5.1) 0 1 2 3 4 0 1 2 3 4
1 0 3 4 2 1 4 0 2 3
2 3 4 1 0 = T, 2 0 3 4 1 = C,
3 4 0 2 1 3 2 4 1 0
4 2 1 0 3 4 3 1 0 2

where T is a member of the union of linear sets (1)-(10), while C is not. It is claimed that
no recoding or linear permutation of T will give C.

Note that in T there exist "rectangles" of the form:

(5.2) ti, j

ti +m

j +n

ti+m,

such that Ti,i = Ti+m,j+n and Ti+m,j = Ti,j+n for n,m # 0. An example of such a rectangle
in T is where t1,2 = to, 3, t0,1 = ta, 3; thus i = 0, j = 1, m = n = 2. Clearly in any recoding
Q(T) of T, q(t), l = q(t)2,3 and q(t)i, = q(t) 0,3* Similarly the rectangles persist over lin-
ear permutations, which merely add constants (modulo k) to i,j,m, and n. The square C has
no such rectangles, so C is outside the transformation set of V union V'. By Algorithm I
below, it can be demonstrated that the six 5x5 Latin squares outside of V union V' are all
members of a second transformation set.

6. For k = 5, the SFLs having no such rectangles (intercalates is another name for such con-
figurations) can be recoded and linearly permuted into the SFL:

(6. 1) e = (i + j) (mod. k).

3



Such squares are called cyclic Latin squares (CLS), and can be constructed for any natural
number k. For any columnwise linear permutation of a CLS, it immediately follows from
this definition that

(6. 2) if eii = En and ei,j+p = En+q
then ei+m, j +p = En+m+q

where all subscripts (as throughout this paper) are reduced modulo k.

7. Note that the orthogonal squares in (3.1) are both columnwise permutations of the CLS for

k = 3. Greco-Latin squares of any order le can always be obtained from CLSs by the follow-
ing construction:

Algorithm I: Prepare an empty k'xk' matrix, k' = 2c+1. Index the first c columns al' a2,
, ac from left to right and the last c columns bc,bc_1,... , b1 from left to right. Index the

central column Cm. Assign k values vi to these column indices so that these values form a
permutation of the first k non-negative integers with the restriction

(7.1) (ai - bi) # (a - bn) # (b - aj) fos all j # n,

all values reduced modulo k. In every column j let

(7.2) eij = (i - v3) (mod. k).

Call the square thus constructed A. Construct square M:

(7.3) m.. = a.ij 1,k-1-j

where air j ij= e in (7. 2). It is claimed that A and M are orthogonal Latin squares, and that
any M constructed from Q(A) is orthogonal to Q(A).

8. Example of Algorithm I for k' = 7: Let vi be the permutation 1564302, which satisfies (7. 1).

Constructing A by (7. 2), and recoding by the permutation (randomly chosen) 3401265 gives
Q(A) =

(8.1) 3 1 0 2 6 4 5

4 2 1 6 5 0 3 0000001
0000010

0 6 2 5 3 1 4 0000100
1 5 6 3 4 2 0 0001000 = Q(M).
2 3 5 4 0 6 1 0010000

0100000
6 4 3 0 1 5 2 1000000
5 0 4 1 2 3 6

The reader can verify that in (8.1) Q(A)1Q(M)

9. That A will always be a Latin square (from which it follows that M, Q(A), and Q(M) are

also) follows immediately from (7.2) and from the specification that the values of vibe a per-
mutation of the first k non-negative numbers; A will always be a columnwise linear permu-
tation of the CLS, as for example:
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(9. 1) 0 k-1 k-2 1

1 0 k-1 ... 2
2 1 0 ... 3

k-1 k-2 k-3 0.

The same construction (9. 1) serves as a proof that (7. 1) always has at least one solution for
any k'. In (9. 1), vi forms the permutation 0,1, 2, ... ,k-1, so that

(9. 2) (a. - b.) = (2j - 1) (reduced modulo k)
J J

(9. 3) (b. - a3) = (1 - 2j) (reduced modulo k).

Since k' = 2c + 1, and j c, the right-hand term in (9. 2) is an increasing function of j, and
in (9. 3) a decreasing function of j as j varies from 1 to c. And since these are of opposite
parity (the first odd, the second even) it follows that (7. 1) is satisfied by (9. 1).

10. To prove that A i M, for all A constructed by Algorithm I, it shall be shown that (Q(A),
Q(M) is always a Greco-Latin square. In the first c columns of (Q(A),Q(M)) entries are of
the form:

(10.1) (An, An + aj - bj),

the subscripts referring to the first column of Q(A). In the last c columns the corresponding
expression is:

(10. 2) (An, An + bj - aj).

In the median column the expression is:

(10.3) (An, An).

By (7. 1), for a given n, (10. 1, 2, 3) assume k different values in the k columns of (Q(A), Q(M) ).
But n has k different values; therefore (Q(A),Q(M))hask2 different entries, which proves that
it is a Greco-Latin square.

Note that for k = k", m. # a. by (7. 3), so in (Q(A), Q(M)) entries of the form of (10.3) can-
not occur. This proves that the algorithm fails for k even. Euler (13) has in fact shown that
for k" no Latin square orthogonal to a CLS (or any permutation or recoding thereof) exists.

11. Any assignment of vi values satisfying (7.2,3) can be represented as a circle having k'
equally spaced points on its perimeter, 2c of these being connected by c chords of c different
lengths. These points are identified with the first k non-negative integers, numbered con-
secutively clockwise or counterclockwise from any point. For k' = 9,
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is such a figure. Identify each chord with a different number j, so that the values of j form
a permutation of the first c natural numbers, and assign to one endpoint of every chord the
symbol a, and b to the other endpoint. Thus each chordal endpoint has a unique name ai or
b3. Assign to the point lying on no chord the name Cm. By construction(7. 1) is satisfied by
a permutation of the first k non-negative integers. For k' < 50, this is in fact a convenient
method of solution, alternative to (9.1). In experimental designs, (A,M) can be randomly
permuted and lineraly recoded, without affecting orthogonality.

12. For k' = ab, Algorithm I can be iteratively used to construct squares like:

(12.1) ABCDEFGH IB CAEFDHIG (R) (S) (T)CABFDEIGH
D EFGH I ABCE FDHIGBCA = (S) (T) (R)FDEIGHCABG HIABCDEFH IGBCAEFD (T) (R) (S).IGHCABFDE

Call M constructed by (7. 3) the mirror image of A, for any Latin square A. The reader can
verify that the square given in (12. 1) is orthogonal to its mirror image. For the case of dou-
ble use of Algorithm I, if k' = gh, it will be possible to partition k types into g sets of h; call
these sets A, B, , G. Using the types in each set, construct by Algorithm I g Latin
squares A, B ..... G of order h, using the same values for vi in each square.

Now treating A, B,... ,G as elements in a super-column construct by Algorithm I a Latin
1super-square letting k' = g and c = 7(g-1). Note that these constructions are always possi-

ble, since k' = gh = 2c+1 implies g,h = 1(mod. 2). The resulting super-square is not in gen-
eral a CLS permutation, and can easily be changed into k' order squares of different trans-
formation sets having orthogonal mirror images by the judicious rearrangement of types with-
in one or more of the h-order squares.

13. To digress at some length, let it be remarked that by a construction quite similar to Al-
gorithm I orthogonal Latin squares can be obtained for any k' odd, one of which is not nec-
essarily in the same transformation set as the CLS. Definition: A diagonal of square array
E is any set of cells in E of the form:

(13.1) ei, 0, ei+1,1, ei+a, 2' " ei+k_l,k-P

In this section, unless otherwise indicated, all values are reduced modulo k. From section
1 it follows that a Latin square has k diagonals of k cells each. Note that any CLS put into
the form of (9. 1) has only one type on each diagonal, while its mirror image has k types on
each diagonal. It follows at once that (9. 1) is orthogonal to its mirror image.

Algorithm II: Prepare an empty k'xk' matrix, and obtain some permutationDo, DI ..... Dk_i
of the first k non-negative integers, such that:

6



(13.2) (Di - Dq ) 0 (i - q) for all i 0 q.

Write this permutation into the first column of matrix D. In every column j, let:

(13.3) d1 .. =
1

(D. -3.) + (j).
3

This implies that:

(13.4) if Dii = Dn, then Di+y,i+y, = (Dn) + (y).

If C is a CLS in the form of (9.1), it is claimed D I C.

Since orthogonality follows from the construction, it shall only be shown that D is a Latin
square, or specifically, that (1. 1) holds, or that

(13.5) Diq 0 D1.
3

0 Dpj for all itp,j0 q.

Suppose Dig = Dii = Dz for some z, i, with j 0 q. Then

(13.6) Di_j, = (D) - (j) by (13.4), and
Di..q,q..q. = (Di) .' (q); therefore
Di_i - Di_q = (q .. j)

which contradicts (13.2). Therefore Dig 0 Dip Suppose Dii = Dpi = Dz for some z,j with
i 0 p. Then by (13.4)

(13.7) Dp_i,j_i = (Dz) (j); by (13.6)
Di_i = Dp_i

which contradicts the definition of D0, Di, ...
square.

For k' = 7, Algorithm II gives the square:

opk-l Then (13.5) is proved, and D is a Latin

(13.8) 2 1 5 0 3 6 4 0 6 5 4 3 2 1

5 3 2 6 1 4 0 1 0 6 5 4 3 2
1 6 4 3 0 2 5 2 1 0 6 5 4 3
6 2 0 5 4 1 3 = D i C = 3 2 1 0 6 5 4
4 0 3 1 6 5 2 4 3 2 1 0 6 5
3 5 1 4 2 0 6 5 4 3 2 1 0 6
0 4 6 2 5 3 1 6 5 4 3 2 1 O.

It can be proven that D in (13.8) is not in the CLS transformation set. Note that d2, 1 =
d4, 4, and d2, 4 = d4, 1, a rectangle of the form of (5. 2). If such a rectangle could exist in a
a CLS, by (6.1,2) En+q = En+m and En+m+q = En for some q 0 0, E a CLS. This implies
that m = q, and that m +q = k, or that 2q = k. Since q is an integer and k odd, this is impossible.

It is stated without proof that (13.2) is satisfied for any k' by:

(13.9) Di = (yi - z) (mod. k)

for any Z and any y > 1 where (y, k) = 1. This rule always gives a D in the CLS transforma-
tion set. In (13.8) the permutation 2516430 gave a non-CLS D, but no general method of ob-

7
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taining such permutations is known to this write r. Appendix B lists several non-CLS
permutations.

It io natural. to ask whether Algorithm II gives orthogonal squares for k even; herein might
lie a simple counterexample to Euler' s conjecture (see section 3). But like Algorithm I, Al-
gorithm II can be shown to fail for all k = hi'. Suppose Do, Di, , Dkli _1 were apermutation
of the first k non-negative integers satisfying (13.2). Define bi = i - Di for i = 0, 1, 2, ... ,
k"-1. It follows from (13.3) that bi = bq for i q. Since bi is reduced modulo k", this im-
plies that:

(13.10) i=k"-1

bi =

i = 0

i=k"-1

i = 0

i = c(k"+1)-k" = c(mod. k").

But by the definition of bi and by the fact that the Di's are a permutation of the first k non-
negative integers,

(13.11) k"-1 k"-1 k"-1 k"-1

0

bi = (i-Di) = i -
0 0 0

which contradicts (13.10), so Algorithm II fails for k".

Di = 0,

Despite this result, Euler' s conjecture can be disproved by a simple combination of tech-
niques used in Algorithms I and Ii. For example, Parker's (15) 10x10 Greco-Latin square,
constructed by an extension of the methods of Bose and Shrikhande (4), is composed of a 7x7
square with ten types from each alphabet orthogonal by diagonals; a 7x3 and a 3x7 rectangle
with cyclically orthogonal rows and columns respectively, each with seven types from each
alphabet; and a 3x3 square of three types from each alphabet, orthogonal byany method. Ap-
pendix C gives an 18x18 square analogously constructed, and the outline of a general method
for obtaining anti-Eulerian squares. See Barra and Guerin (2) for k" # 6(mod. 12).



1

PART II

SEQUENTIAL COUNTERBALANCING

14. Every row i of a Latin square. has k-1 pairs of consecutive elements of the form Ei,j

Ei,j4.1. E. g. row

(14.1) 4 1 0 2 3

from a square where k = 5, has four pairs: 4 1; 1 0; 0 2; and 2 3. Since there are k rows,

there are k(k-1) pairs in E of order k. Defining Ei En 0 En Ei, it can be seen that k(k-1) is

the number of possible pairs of types in E. Definition: A Latin square containing all possi-

ble consecutive pairs in its rows is said to be counterbalanced for immediate sequential ef-

fects (abbreviated SQCB).

15. Theorem 1: A square in the CLS transformation set is SQCB if and only if the set of allval-

ues d(j) is a permutation of the first k-1 natural numbers, where d(j) = (s - r) (mod. k), Ei,i

= Er,Ei,j4.1 = Es.

From (6. 1) it follows that d(j) is constant Lor any i, despite recodings or linear permutations

by rows or columns (although these introduce new constant values). Suppose E were a CLS

such that d(j) = d(j4c) for j j):c. Then Ei,j (= Em) is followed by Ei, j +1 = Em +d(j). But in

some row i* # i, j* = Em is followed by Ei*, p+1 = Em+doo = Em+d(j) So Em Em+d(j)

occurs twice in E. Then if E were SQCB the remaining k(k-1)-1 pairs of types would occur

in only k(k-1)-2 pairs of cells, which is impossible. Thus the theorem is necessary.

Proof of sufficiency follows from the theorem's requirement that type Em be followed by

types Em+i, Em+2, Em+k_i for every Em occurring in the firstk-1 columns of E. Re-

duced modulo k, this gives k-1 different types following Em. Therefore all k types in E are

followed by k-1 types exactly once.

Corrolary: No CLS-transformation set square is SQCB for k =

In such a square, if it existed, by Theorem 1:

(15.1) j=k-2

d(j) =

j = 0

i=k-1

i -i
i = 2 k(k-1) = kc = 0(mod. k).

But then by (6. 1, 2), in such a square where Ei, 0 = Em, then by the definition of d(j),

Em+kc = Em, which contradicts (1. 1).=

9



16. Bradley (5) gives a method of constructing SQCB permutations of CLSs for k" that satis-
fies the restriction of Theorem 1. He specifies that d(j) = (-1)3(j), by letting the first row be
of the form:

(16.1) Eo, Ek- Ek-z, Ez Ec Ecn. Ec,

and setting the types equal to the subscripts in (16.1),

(16.2) ei,j =(E0,j)+ (i)

describes the rest of the cells. Since for j' = 1(mod. 2), d(j') is a monotonically decreasing
function of j, and for j" = 0(mod. 2), d(j ") is monotonically increasing, then Bradley's d(j)
forms a permutation of the first k-1 natural numbers, d(j") and d(j') being of opposite parity.

17. For k = p'-1, another SQCB CLS is available:

(17.1) 1 2 3 4 5 6 1 2 3 4 5 6
2 4 6 1 3 5 3 6 t. 5 1 4
3 6 2 5 1 4 2 4 6 1 3 5

4 1 5 2 6 3= 5; = 6 5 4 3 2 1

5 3 1 6 4 2 4 1 5 2 6 3

6 5 4 3 2 1 5 3 1 6 4 2;

S is an example for p' = 7 (p' must be a prime). S* is a linear permutation of S by rows, by

which it can be seen that S is a receded and linearly permuted CLS. In S, the SFL, such
squares are symmetrical around both diagonals andhave the peculiarity that if eij = En, ei, j+i =

Em, iand E+r, j+q = En, then ei+r,j+q+1 = En+r, where all subscripts are reduced modulo pt.

S is constructed by the rule

(17.2) eij = E(j.

again reducing by modulo 131, where i and j range from 1 to k, and are in fact simply modu-
lar multiplication tables for p'. Alimena (1) was apparently unaware of this when he described

his procedure for constructing them (which might also serve as a masterplan for a spider-
web). Alimena asserts that squares of the form of (17. 2) are superior for experimental work,

in terms of sequential properties, to those described by Bradley (16.1,2).

18. Define the separation between two types in a row of a Latin square as the absolute differ-
ence between the column indices of the cells in which they appear, The mean separation is
the summed separations for two letters divided by k. (Since this is to be an ad hoc means of

comparing (17.2) and (16. 1,2), the directional, insensitivity of these definitions is unimpor-
tant; by both constructions every row is the mirror image of some other row.) For k = 10,

mean separations by types are tabled in (18.1). Entries above the main diagonal have ref-
erence to (16.1,2); those below, to (17.2), or rather to Alimena's construction, which has
identical separation values. Note that for an ideally counterbalanced square, mean separa-
tions would be constant across all types.
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(18.1) E0 El E2 E3 E4 E5 E6 E7 E8 E9

E0 1.8 8 3.2 2 4.2 2 4.8 8 5.0 0 4.8 8 4.2 2 3.2 2 1.8 8

E1 3.0 - 1.8 3.2 4.2 4.8 5.0 4.8 4.2 3.2
E2 3. 2 3. 8 - 1. 8 3. 2 4. 2 4. 8 5. 0 4. 8 4. 2

E 3 3.2 3.0 4.0 - 1.8 3.2 4.2 4.8 5.0 4.8

E4 4.0 3.8 04.0 3 . 2 1.8 3.2 4.2 4.8 5.0

E5 3.0 3.2 3.0 3.8 5.0 - 1.8 3.2 4.2 4.8

E6 3.8 4.0 3.0 5.0 3.8 3.2 - 1.8 3.2 4.2
E7 3.8 3.2 5.0 3.0 3.0 4.0 4.0 - 1.8 3.2

E8 4.0 5.0 3.2 4.0 3.2 3.8 3.0 3.8 - 1.8
E 9 5.0 4.0 3.8 3.8 3.0 4.0 3.2 3.2 3.0

The average absolute deviation from the grand mean is 0.5 for (17.2), 1.0 for (16.1,2).
For a 10x10 square, the greatest possible mean separation is 5.0, the least 1.8; (16.1,2)

achieves this range, and (17.2) the upper limit. Since it is generally less detrimental that
successive treatments tend to be remote than that they tend to follow one another closely,
(18.1) supports the view that modular tables give "better" squares than (16.1,2); but the dif-
ference may not be of practical importance, and it must e remembered that (17.2) is only
applicable when k = pl=1.

19. It can be shown that (17.2) will not generalize to

(19.1) eij = E(j. i),

with the subscript reduced modulo k+1 p'. If E were a square so constructed, then k+1 = ab
1

for some a, 1 < a k.2., and in some cell eab, by (19.1), where i,j range from 1 to k, ei,i =

ea, b = E0. But i 1 # 0(mod. (k+1)) in the range of i, so Eo # En, l so E is not a Latin square.

20. By the corrolary to Theorem 1, no SQCB Latin square exists in a CLS transformation set

for k'. No SQCB Latin square in any transformation set is known for k', and it is conjectured

that none exists.

It will be shown, however, that for k' it is always possible to construct two Latin squares
E and F such that each pair of k(k-1) possible pairs of types occurs exactly twice within the
rows of E and F. Such squares will be said to be complementary.

Algorithm III: For k' = 2c + 1, squares E and F where

(20.1) eii = ( -1)3 1)/D+

fi,j = (-1)i [k - j) /g + i

can be constructed, where [x] represents the integral part of x, such that E is complemen-

tary and orthogonal to F.
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It is evident that each column of E and F conforms to (6. 2). Then E and F are cyclic Latin
squares if for constant i, ei,i and fi, j form permutations of the first knon-negative integers
as j ranges from 0 to k-1. Note that for j" even, ei,j11 in (20. 1) is a monotonically increas-
ing function of j"; and for j' odd, ei, ji is a monotonically decreasing function of j'. But

(20. 2) c = ei,r(max) = ei, jl(min) = c + 1;

an analagous statement holds for fi, j. Then by monotonicity, E and F are Latin squares.

To show El F, set

(20. 3)
j + c + 1 for j even;

b(j) =
c - j for j odd.

Then Eii - Fii = b(j) (mod. k). Now if b(2t) = b(2t'+1) (mod. k), then 2t + c + 1 = c + 2t' - 1

(mod. k), so 2t + 2t' + 2 = 0(mod, k). But since 2t + 2t' + 2 < 2k, we must have 2t + 2t' + 2 =
k, which is impossible, since k is odd. Since (20.3) gives two monotonic functions, this
proves that E 1 F.

Furthermore, for d(j) in E, as defined in section 15 above, d(j) assumes the values 2,4,
,k-1 twice. Then every pair of types Ei,j Ei,j+1 is of the form

(20.4) Em Em+2y for some natural number y.

It follows that kc ordered pairs of types occur in E. Similarly, F contains kc pairs of the
form

(20. 5) Em Em+2y_1

since d(j) assumes c different odd values twice in any row. Sine 120.4) t (20.5), it follows
that kc + kc = k(k-1`, different pairs occur twice in E and F, so E and F are complementary.

21. Example of Algorithm III, for k = 7:

(21.1) 0 6 1 5 2 4 3 3 4 2 5 1 6 0
1 0 2 6 3 5 4 4 5 3 6 2 0 1

2 1 3 0 4 6 5 5 6 4 0 3 1 2
3 2 4 1 5 0 6= E; 6 0 5 1 4 2 3
4 3 5 2 6 1 0 0 1 6 2 5 3 4
5 4 6 3 0 2 1 1 2 0 3 6 4 5
6 5 0 4 1 3 2 2 3 1 4 0 5 6

The extension of this construction to within-column counterbalancing is accomplished by

permuting the last k-1 rows until the first column is the transpose of the first row in both
squares. The construction will also give pairs of Greco-Latin squares counterbalanced for
sequential effects within (but not between) alphabets.
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APPENDIX A

THE 5 x 5 SQUARES

The k = 5 SFLs in Lexicographic Order:
First rows and columns are deleted; linear sets indicated.

(1) (10) (5) (9) (9) (5) (1)
0 3 4 2 0 3 4 2 0 3 4 2 0 3 4 2 0 4 2 3 0 4 2 3 0 4 2 3
3 4 0 I 3 4 0 1 4 0 1 3 4 1 0 3 3 0 4 1 3 1 4 0 4 3 0 1

4 I 2 0 4 0 2 I 2 4 0 I 2 4 I 0 4 I 0 2 4 0 1 2 2 1 4 0
2 0 1 3 2 1 0 3 3 1 2 0 3 0 2 1 2 3 1 0 2 3 0 1 3 0 1 2

(10) (4) (3) (8) (7) (8) (7)
0 4 2 3 2 0 4 3 2 0 4 3 2 0 4 3 2 0 4 3 2 3 4 0 2 3 4 0
4 3 1 0 3 4 0 1 3 4 0 1 4 3 0 1 4 3 1 0 0 4 1 3 0 4 1 3

2 0 4 1 4 1 2 0 4 1 0 2 0 4 1 2 0 4 2 1 4 0 2 1 4 1 0 2
3 1 0 2 0 3 1 2 0 3 2 1 3 1 2 0 3 1 0 2 3 1 0 2 3 0 2 1

CLSa (9) (6) (10) (4) (3) (5)
2 3 4 0 2 3 4 0 2 3 4 0 2 3 4 0 2 4 0 3 2 4 0 3 2 4 0 3

3 4 0 1 4 0 1 3 4 1 0 3 4 1 0 3 0 3 4 1 0 3 4 1 3 0 4 1

4 0 1 2 0 4 2 1 0 4 1 2 0 4 2 1 4 0 1 2 4 1 2 0 4 1 2 0
0 1 2 3 3 1 0 2 3 0 2 1 3 0 1 2 3 1 2 0 3 0 1 2 0 3 1 2

(2) (1) CLSb CLSc (8) (7) (10)
2 4 0 3 2 4 0 3 2 4 0 3 3 0 4 2 3 0 4 2 3 0 4 2 3 0 4 2
3 1 4 0 3 1 4 0 4 3 1 0 0 4 1 3 4 1 0 3 4 1 0 3 4 3 0 1

4 0 1 2 4 0 2 1 0 1 4 2 4 1 2 0 0 4 2 1 2 4 1 0 2 41 0
0 3 2 1 0 3 1 2 3 0 2 1 2 3 0 1 2 3 1 0 0 3 2 1

(6) (9) (4) (2) (6) (8) (3)
3 0 4 2 3 0 4 2 3 4 0 2 3 4 0 2 3 4 0 2 3 4 0 2 3 4 2 0
4 3 I 0 4 3 1 0 0 1 4 3 0 3 4 1 4 0 1 3 4 3 0 1 0 1 4 3

0 4 2 I 2 4 0 1 4 0 2 1 4 1 2 0 2 1 4 0 2 0 4 1 4 0 1 2
2 1 0 3 0 1 2 3 2 3 1 0 2 0 1 3 0 3 2 1 0 1 2 3 2 3 0 1

(1) (5) (2) CLSd (4) CLSe (4)
3 4 2 0 3 4 2 0 3 4 2 0 3 4 2 0 3 4 2 0 4 0 2 3 4 0 2 3

0 3 4 I 0 3 4 1 4 0 1 3 4 1 0 3 4 3 0 1 0 3 4 I 3 1 4 0
4 0 1 2 4 1 0 2 0 1 4 2 2 0 4 1 0 1 4 2 2 4 1 0 0 4 1 2
2 1 0 3 2 0 1 3 2 3 1 0 0 3 1 2 2 0 1 3 3 1 0 2 2 3 0 1

(3) (5) (2) (1) (8) (9) (10)
4 0 2 3 4 0 2 3 4 0 2 3 4 0 2 3 4 3 0 2 4 3 0 2 4 3 0 2
3 1 4 0 3 4 0 1 3 4 0 1 3 4 1 0 0 1 4 3 0 4 1 3 0 4 1 3

2 4 0 1 0 1 4 2 2 1 4 0 0 1 4 2 2 4 1 0 2 0 4 1 2 1 4 0
0 3 1 2 2 3 1 0 0 3 1 2 2 3 0 1 3 0 2 1 3 1 2 0 3 0 2 1

(6) CLSi (7) (7) (6) (2) (3)
4 3 0 2 4 3 0 2 4 3 0 2 4 3 2 0 4 3 2 0 4 3 2 0 4 3 2 0
3 0 4 1 3 1 4 0 3 4 1 0 0 1 4 3 0 4 1 3 3 0 4 1

30 412 4 1 0 0 4 2 1 2 0 4 1 2 4 0 1 2 0 4 1 0 4 1 2 40 21

0 1 2 3 2 0 1 3 0 1 2 3 3 0 1 2 3 1 0 2 2 1 0 3 2 0 1 3.
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APPENDIX B

NON-CLS PERMUTATIONS SATISFYING ( 13.2)

For the permutations below, any integer y can be added to all terms, provided that reduction
modulo k follows. Any term can be taken as the initial term, if followed by the k-1 terms to the

right in order; thus each solution below implies k2-1 additional solutions.

k = 7: 0 2 6 5 3 1 4 0 2 5 1 6 4 3

k =9: 0 2 5 7 1 3 8 6 4 0 2 6 1 7 4 8 3 5

0 3 6 2 1 8 7 5 4 0 4 1 7 6 3 2 8 5

0 2 7 5 1 8 4 6 3 0 2 4 8 7 3 1 6 5

0 3 8 2 7 6 1 5 4 0 2 7 1 6 8 5 4 3

0 2 5 7 1 4 8 3 6 0 2 6 1 7 2 5 8 4

0 6 3 1 8 7 5 4 2 0 4 1 8 6 2 7 5 3

0 3 6 1 7 4 2 8 5 0 2 5 8 1 7 4 6 3

0 3 7 2 8 6 4 1 5 0 3 1 8 7 6 4 2 5

k= 11: 0 2 7 6 1 9 5 3 10 4 8 0 2 4 9 7 3 10 1 5 8 6

0 2 9 8 6 3 10 4 7 1 5 0 3 10 9 8 4 7 5 2 1 6

0 2 10 7 6 3 9 1 4 8 5 0 2 7 1 6 9 3 10 4 8 5

0 2 6 10 9 4 8 5 3 1 7 0 4 1 8 2 9 7 3 10 6 5

0 2 5 10 3 9 8 1 6 4 7 0 2 5 1 10 9 8 6 4 3 7

0 2 8 5 1 10 9 6 4 7 3 0 2 4 7 1 10 9 6 3 5 8

0 2 10 6 9 7 4 3 1 8 5 0 2 4 9 7 10 3 5 1 8 6

0 2 6 9 7 1 5 4 10 3 8 0 3 8 2 1 9 7 10 6 5 4

0 2 8 5 9 1 4 10 7 6 3 0 2 8 5 9 3 10 4 7 1 6

0 4 9 5 3 10 7 2 1 6 8 0 4 10 9 5 1 8 6 2 7 3

0 2 8 1 6 9 3 10 7 5 4 0 2 6 10 9 7 5 4 3 1 8

0 2 6 1 8 5 3 10 9 4 7 0 2 4 7 10 1 9 6 5 3 8

k= 13: 0 2 9 1 12 8 10 6 4 11 7 3 5 0 2 10 12 8 4 11 9 5 7 3 1 6

0 3 8 7 12 2 11 5 4 10 9 1 6 0 3 8 7 12 2 9 1 6 5 11 In 4

0 3 7 4 12 2 10 1 11 8 6 9 5 0 2 6 9 1 4 11 3 10 12 8 5 7

0 3 7 11 8 1 12 5 9 6 4 10 2 0 4 9 8 2 11 5 3 12 10 7 6 1

0 4 3 11 10 7 5 1 12 6 2 9 8 0 2 4 6 9 1 12 11 3 8 7 5 10

0 2 8 10 7 3 5 12 4 11 1 6 9 0 2 5 1 12 11 10 9 7 3 6 8 4

0 3 1 6 12 10 7 11 4 2 8 5 9 0 5 1 8 2 11 3 10 9 4 12 7 6
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0 3 1 11

0 3 1 9

8

12

12 7 10
2 10

5

8 11
2

7

6

6

9 7
5 4

0

0

2

2

8

4

1

6

7

11

9

9

3

12

12

5

4 11 5 10 6

3 1 7 10 8

k = 15: 0 4 10 1 14 7 5 13 12 6 11 3 2 9 8

0 2 11 13 7 3 10 12 5 8 1 4 14 9 6

0 4 11 10 2 1 8 13 7 6 14 12 5 3 9

0 2 11 8 3 13 1 9 12 5 7 14 10 4 6

0 3 12 11 1 6 9 5 14 13 2 10 8 7 4

0 2 5 13 10 12 4 9 7 3 14 1 6 8 11

0 2 6 11 9 1 3 14 10 8 13 5 7 4 12

0 3 8 13 12 6 9 5 2 1 14 7 11 10 4

0 4 10 7 13 3 8 12 5 1 6 2 11 14 9

k = 17: 0 2 14 10 3 13 8 12 4 7 16 15 6. 5 11 1 9

0 2 11 9 1 15 4 12 3 8 14 13 6 16 10 5 7

0 2 12 14 9 3 13 6 5 11 16 7 15 4 1 10 8

0 2 10 1 8 14 13 4 3 12 15 7 11 6 16 9 5

0 4 1 8 6 15 12 16 9 3 14 2 7 11 10 5 13

0 2 16 12 8 15 5 13 10 14 6 9 3 7 4 1 11

0 4 1 10 8 15 12 16 3 11 6 5 9 14 2 13 7

0 2 8 1 15 12 16 10 13 5 9 6 14 4 11 7 3

0 3 6 10 15 14 11 8 1 5 16 9 7 4 13 12 2

0 2 11 15 1 9 16 13 4 8 12 14 10 7 5 3 6

0 3 1 8 7 16 13 11 4 15 2 12 9 6 5 10 14

0 2 6 10 1 15 5 13 16 3 12 14 8 11 9 7 4

k = 19: 0 2 16 8 14 1 12 18 7 17 13 4 10 15 11 9 6 5 3

0 2 6 9 14 10 5 15 1 11 4 18 8 3 17 7 13 12 16

0 2 17 15 14 11 9 5 10 16 18 7 13 3 8 1 6 12 4

0 2 5 9 8 14 4 18 13 3 17 10 1 6 16 11 7 12 15

0 2 13 17 11 1 9 16 14 7 12 8 6 18 5 4 15 10 3

2 16 5 8 13 9 17 1 14 7 18 6 3 12 11 15 4 10

0 2 18 11 6 17 16 3 15 13 9 14 7 6 12 1 10 4 8

0 2 11 17 6 10 9 18 15 3 14 7 1 4 12 8 13 16 5

0 2 6 14 13 1 4 15 11 8 16 5 17 10 7 3 18 12 9

0 2 14 11 10 1 5 12 17 3 7 15 4 16 9 13 18 8 6

0 2 12 9 3 18 14 11 4 16 5 13 10 6 17 1 8 7 15

0 2 15 13 3 8 12 5 17 6 14 18 4 9 16 1 11 10 7.
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APPENDIX C

AN 18 x 18 GRECO-LATIN SQUARE

B F HI L A N M J O D P C Q K G R E
j 1 j ma n b i o c p d q h e g f

C GI J M F B N AK O E P D Q L H R
k ml a b r n c j o d p e q i f h

D H J K A R G C N B L O F PEQMI1.a m b c h r n d k o e p f q j g

E I K L B J R H D N C M O G P F Q A

m b a c d j i r n el o f p g q k h

F J L M C B K RI END A O H P G Q
a c b d e i k j r n f m o g p h ql

G K MA D Q C L R J F NE B O I PH
b d c e f m j 1 k r n g a o h p

H L A B E I Q D M R K G N F C O J P
c e d f g q a k ml r n h b oi p j

I M B C F P J QE A R L H N G D O K
d f e g h k q b 1 a m r n i c o j p

J A C D G L P K Q F BR MI N H E 0
e g f h i p 1 q c mbar n j d

K B DE H O M P L Q G C R A J NI
f h g i j 113 m q d a

L C E F I GO A P M Q H D R B K NJ
g i h j k o m p a q e b d c r n1 f

M D F G J K HO B P A Q I ER C L N
h j i k 1 g o a p b q f c e d r n m

A E G H K N L I O C P B Q J F R DM
k j 1 ma h o b p c q g d f e r n

N 0 P Q R MA B C D E F G H I J K L
n p r o q e f g h i j k 1 ma

O P Q R N H I J K L MA BCD E F G
o q n p r f g hi j k 1 ma

P Q R N O E F G H I J K L M A BCD
p r o q n b c de f g h i j k 1 ma

Q R N O P D E F G H I J K L MA BC
q n p r o c d e f g h i j k 1 ma

R N O P Q C D E F G H I J K L MA B
r o q n p d e f g h i j k 1 ma
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The above 18 x 18 square was constructed by the following strategy:

(1) Obtain some odd number a, k/4 < a < k/3.

(2) Partition k x k array S into rectangles R1,R2,R3,R4:
i) R

1
= first k-a rows, last k-a columns of S.

ii) R2 = first k-a rows, first a columns of S.
iii) R3 = last a rows, last k-a columns of S.
iv) R4 = last a rows, first a columns of S.

(3) Let P(F) and P(f) be permutations F1, F2,... ,Fk_a, and fl,f2,...,fk_a of 2(k-a) types alto-
gether.

(4) Let P(E) and P(e) be permutations El, E2,... ,Ea and el, e2 ..... ea of 2a types different from
the types in (3).

(5) Write F1 into A, where A is some randomly chosen set of k-a cells lying on k-a different
rows, columns, and diagonals (as defined in (13.1)) of R1.

(6) Write P(F) into the diagonals of R1 as in (13. 4).

(7) Write P(E) into the unoccupied cells of the first row of R1.

(8) Write Ei into every cell of R1 with Ei on the same diagonal by (7).

(9) Write F1 into some cell of every row of R2 not having an F1 in R1 by (5), so F1 lies in every
column of R2.

(10) Write F1 into some cell of every column of R3 not having an F1 in R1 by (5), so F1 lies in
every row of R3.

(11) Write P(F) cyclically into the columns of R2 and the rows of R3, from top to bottom, left to
right.

(12) Call the last k-2a rows, first k-2a columns of R1 "R*."

(13) Find z(c) sets Cn of k-2a cells in RAF such that
i) every cell in Cn lies on a different row, column, and diagonal of R1;

ii) every type in P(E) is contained once in Cn;
iii) k-3a different types in P(F) occur in Cn.

(14) Call the set of types CnnP(F) "Xn."

(15) Let the first a rows and a columns of R2 be called R * *.

(16) Let the last a rows and columns of R3 be called R***.

(17) Find some set B1 of 2a cells, a in ReA* and a in R***:
i) every cell in B1 lies on a different row, column of S.

ii) B1 contains 2a different types from P(F).
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(18) Call the types in P(F) not in B1 "Y1."

(19) If Xn = Y1 for some Cu, go on to (24).

(20) If for n = 1,2, ... , z(c) Xn # Yu, go back to (17) and find B2 0 B1 satisfying definition of B1.
If necessary, go on to B3, B4,... , Bm. If Xn = I'm, for some Bm, Cry, go on to (24).

(21) If for m = 2,3,...,z(b) no Xn = Ym, go back to step (5) and write F1 into A2 0 A, where A2
defined as A. If necessary, go on to ,Au. If Xn = Ym for some Au, Bm, Cu, go

on to (24).

(22) If for u = 2,3,...,z(u) Xn # Ym, go back to (1) and obtain a2 # a, a2 defined as a. If neces-
sary, go on to a3,a4,..., ay. If Xn = I'm for some av,Au,Bm,Cn, go on to (24).

(23) If for v = 2,3, ... , z(v) Xn Ym, give up.

(24) If Xn = Ym, write f1 into the cells of Bm and Cn.

(25) Write P(f) cyclically into the diagonals of R1 containing fl, as in (6).

(26) Write P(e) into the cells of the first row of R1 unoccupied by fi, as in (7).

(27) Write ei constantly into diagonals of R1 containing ei, as in (8).

(28) Write P(f) cyclically into the columns of R2 and into the rows of R3 as in (11).

(29) Construct by Algorithm I or II an a-order square having P(E) in the cells as types, ortho-
gonal to a square having P(e) as types. Write both squares into the cells of R4.

(30) Now S is a Greco-Latin square of order k".

For the 18x18 square exhibited above, the solution was obtained when v = 1, u = 1, m = 4, z(c)
= 12. For k" = 18, a is uniquely = 5. This solution took an hour by hand. Note that the values

z(b), z(u), and z(v) are arbitrary limits, set as numbers of trials or as amounts of computer
time. Of these four, z(v) will tend to have the smallest limiting values and z(u) the largest. In

the opinion of this writer, it would be worthwhile to test z(v) and z(c) exhaustively, if possible,
contenting oneself with a fraction of the possible values for z(u) and z(b).
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